This Section introduces the reader to the early history of computer hardware and software. The purpose of this Section is to describe the enormous changes that occurred in the early days of the computer industry in order to provide context for the discussions that will follow. This Section does not describe events up to the present day. More recent developments (including the growth of the Internet) are discussed in the sections that follow, and in later chapters, where modern technological developments often present new legal issues.
Following the invention of the abacus approximately 5,000 years ago, the field of computing machines did not develop significantly until the eighteenth century. Leonardo da Vinci (1425-1519) sketched some designs for mechanical adding machines. Blaise Pascal (1623-1662) invented and built the “Pascaline,” a sophisticated mechanical device for counting. Although not commercially
successful because of its cost and delicate construction, the counting-wheel design served as the basis for most mechanical calculators until the 1960s. At the turn of the nineteenth century, Joseph-Marie Jaquard (1752-1834) introduced a new loom technology that used punched cards to control the movement of needles, thread, and fabric to create distinctive patterns through a binary mechanical automation technology. In the mid-nineteenth century, Charles Babbage envisioned mechanical devices (the Difference Engine and the Analytical Engine) to perform arithmetic operations. His designs, involving thousands of gears, proved impractical. One of his students, Lady Ada August
Lovelace, proposed the use of punched cards to automate the operation of such
devices.
successful because of its cost and delicate construction, the counting-wheel design served as the basis for most mechanical calculators until the 1960s. At the turn of the nineteenth century, Joseph-Marie Jaquard (1752-1834) introduced a new loom technology that used punched cards to control the movement of needles, thread, and fabric to create distinctive patterns through a binary mechanical automation technology. In the mid-nineteenth century, Charles Babbage envisioned mechanical devices (the Difference Engine and the Analytical Engine) to perform arithmetic operations. His designs, involving thousands of gears, proved impractical. One of his students, Lady Ada August
Lovelace, proposed the use of punched cards to automate the operation of such
devices.
Toward the end of the nineteenth century, a U.S. Census Bureau agent named Herman Hollerith developed a punched-card tabulating machine to automate the census. Drawing on the use of “punched photography” by railroads (to encrypt passengers’ hair and eye color on tickets), Hollerith proposed the encoding of census data for each person on a separate card that could be tabulated mechanically. After developing this technology for the Census Bureau, he formed the Tabulating Machine Company in 1896 to serve the growing demand for office machinery, such as typewriters, record-keeping systems, and adding machines. The company grew through the expansion of its business and merger with other office supply companies, and in 1924 Thomas J. Watson, the company’s general manager, changed the company’s name to International Business Machines Corporation (IBM). By the late 1920s, IBM was the fourth largest office machine supplier in the world, behind Remington- Rand, National Cash Register (NCR), and Burroughs Adding Machine Company.
IBM made numerous improvements to tabulating technology during the 1920s and 1930s and eventually developed a machine that could compare cards, a significant innovation that enabled machines to perform simple logic (if— then) operations.